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BOUNDEDNESS AND EXPONENTIAL STABILITY
FOR PERIODIC TIME DEPENDENT SYSTEMS

CONSTANTIN BUŞE AND AKBAR ZADA

Abstract. The time dependent 2-periodic system

ẋ(t) = A(t)x(t), t ∈ R, x(t) ∈ C
n (A(t))

is uniformly exponentially stable if and only if for each real number
µ and each 2-periodic, Cn-valued function f, the solution of the
Cauchy Problem

{

ẏ(t) = A(t)y(t) + eiµtf(t), t ∈ R+, y(t) ∈ C
n

y(0) = 0

is bounded. In this note we prove a result that has the above result
as an immediate corollary. Some new characterizations for uniform
exponential stability of (A(t)) in terms of the Datko type theorems
are also obtained as corollaries.

1. Introduction

The concept of asymptotical stability is fundamental in the theory
of ordinary and partial differential equations. In this way the stability
theory leads to the real world applications. The recent advances of sta-
bility theory interact with spectral theory, harmonic analysis, modern
topics of complex functions theory and also with control theory. This
note begins with the following simple remark.

Let a be a complex number. The scalar differential equation

ẋ(t) = ax(t), t ∈ R

is asymptotically stable, i.e. lim
t→∞

|e(t−t0)a| = 0 for all t0 ∈ R, if and only

if the real part of a is negative or if and only if for each real number µ

and each complex scalar b, the solution of the Cauchy Problem

{

ẏ(t) = ay(t) + eiµtb, t ∈ R+

y(0) = 0.

is bounded.
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In appropriate terms, this nice and elementary result may be ex-
tended to the case when a is a quadratic matrix having complex entries
and b is a vector in Cn. The result can also be extended to the case
when a is a bounded linear operator acting on a Banach space and b is
a vector in this space. See e.g. [4].

The stability result for matrices has been recently generalized by the
second author of this note for exponential dichotomy. See [5].

The similar problem for discrete time-dependent periodic systems in
infinite dimensional Banach spaces has been developed in [1]. In fact,
this note can be seen as a continuous finite dimensional version of this
latter quoted paper.

2. Notations and Preliminary Results

By X we denote the Banach algebra of all quadratic matrices with
complex entries endowed with the usual operatorial norm. An eigen-
value of a matrix L ∈ X is any complex scalar λ having the property
that there exists a nonzero vector v ∈ Cn such that Lv = λv. The spec-
trum of the matrix L, denoted by σ(L), consists by all its eigenvalues.
The resolvent set of L, denoted by ρ(L), is the complement in C of
σ(L).

We begin with few lemmas which will be useful later.
Let h1, h2 : [0, 2] → C given by

h1(u) =

{

u, u ∈ [0,1)
2 − u, u ∈ [1,2]

(1)

and

h2(u) = u(2 − u).

Lemma 1. For each real number µ we have that

I1(µ) :=

∫ 2

0

h1(u)e
iµudu =

1

µ2
[2eiµ − e2iµ − 1] (2)

and

I2(µ) :=

∫ 2

0

h2(u)e
iµudu = e2iµ(2 − iµ) − (2 + iµ). (3)

Moreover, I1(µ) 6= 0 if and only if µ is in the set C\{2kπ : k ∈ Z} and

I2(µ) 6= 0 for all µ ∈ {2kπ : k ∈ Z}.
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Proof. After an obvious calculation we can see that the equality (2) is
fulfilled and thus I1(µ) = 0 if and only if

{

2 sinµ− sin 2µ = 0
2 cosµ− cos 2µ− 1 = 0.

This happens if and only if µ ∈ {2kπ : k ∈ Z}. Using (3) we get I2(µ) 6=
0 for all µ ∈ {2kπ : k ∈ Z}. �

Lemma 2. Let L be a quadratic matrix of order n ≥ 1 having complex

entries. If

sup
m∈{1,2,3... }

‖Lm‖ = M <∞

then each absolute value of the eigenvalue λ of L is less than or equal

to 1.

Proof. Let λ be an eigenvalue of L. Suppose on contrary that |λ| >
1. Then there exists a non zero vector x ∈ Cn such that Lx = λx.
Therefore Lmx = λmx for all m = 1, 2, . . . and then

M ≥ ‖Lm‖ ≥
‖Lmx‖

‖x‖
= |λ|m → ∞ when m→ ∞.

This is a contradiction and the proof of Lemma 2 is finished. �

Lemma 3. Let L be as above. If

sup
N∈{1,2,3... }

‖I + L+ · · · + LN‖ = K <∞ (4)

then 1 is not an eigenvalue of L.

Proof. Suppose 1 ∈ σ(L). Then Lx = x for some non zero vector x in
Cn and Lkx = x, for all k = 1, 2, . . .N . Therefore

sup
N∈{1,2,3... }

‖I + L+ · · ·+ LN‖ = sup
N∈{1,2,3... }

sup
ξ 6=0

‖(I + L+ · · ·+ LN )(ξ)‖

‖ξ‖

≥ sup
N∈{1,2,3... }

N‖x‖

‖x‖
= ∞,

which is a contradiction . This completes the proof. �

Corollary 1. Let T be a quadratic matrix of order n ≥ 1 having com-

plex entries. If for a real number µ, have that

sup
N∈{1,2,3... }

‖I + eiµT + · · ·+ (eiµT )N‖ = K(µ) <∞ (5)

then e−iµ is not an eigenvalue of T.
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Proof. We apply Lemma 3 for L = eiµT . This yields that 1 ∈ ρ(eiµT )
and then I − eiµT is an invertible matrix. Equivalently eiµ(e−iµI − T )
is an invertible matrix i.e. e−iµ ∈ ρ(T ). �

Corollary 2. Let T be as above. If for each real number µ the inequality

(4) is fulfilled then the spectrum of T lies in the interior of the circle

of radius one.

Proof. We use the identity

(I − eiµT )(I + eiµT + · · ·+ (eiµT )N−1) = I − (eiµT )N .

Passing to the norm we get :

‖(eiµT )N‖ ≤ 1 + ‖(I − eiµT )‖‖(I + eiµT + · · ·+ (eiµT )N−1)‖

≤ 1 + (1 + ‖T‖)K(µ).

From Lemma 2 follows that the absolute value of each eigenvalue λ
of eiµT is less than or equal to one and from Lemma 3, e−iµ is in the
resolvent set of T . �

The infinite dimensional version of Corollary 2 has been stated in
[3].

3. Boundedness and exponential stability

Consider the homogenous time-dependent differential system

ẋ = A(t)x, (A(t))

where A(t) is a 2-periodic continuous function, i.e. A(t+ 2) = A(t) for
all t ∈ R. The choice of 2 as period is due to the method of the proof
but the result may be preserved with arbitrary period T > 0 instead
of 2. It is well-known that the system (A(t)) is uniformly exponentially

stable, i.e. there exist two positive constants N and ν such that

‖Φ(t)Φ−1(s)‖ ≤ Ne−ν(t−s) for all t ≥ s,

if and only if the spectrum of the matrix V := Φ(2) lies inside of the
circle of radius one. See e.g. [2], where even the infinite dimensional
version of this result is stated.

It is natural to ask if the negativeness of all eigenvalues of A(t)
yields the exponential stability of the system (A(t)). We give here a
counterexample, adapted from [6], in order to justify that the answer
of the previous question is NO. Let us denote by Φ(t) the fundamental
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matrix of (A(t)) i.e. the unique solution of the operatorial Cauchy
Problem

{

Ẋ(t) = A(t)X(t)
X(0) = I.

(A(t), 0, I)

Let us consider the matrices:

D(t) :=

(

cos t sin t
− sin t cos t

)

, A =

(

−1 −5
0 −1

)

, B =

(

−1 π − 5
−π −1

)

.

Define A(t) = D(−πt)AD(πt) and Φ(t) = D(−πt)etB . Then

Φ(0) = I,Φ′(t) = A(t)Φ(t), σ(A(t)) = {−1} for all t ∈ R

and σ(Φ(2)) = {e2λ1 , e2λ2}, where λ1 = ρ − 1, λ2 = −ρ − 1 and
ρ2 = π(5 − π). This shows that the system (A(t)) is not uniformly ex-
ponentially stable because e2λ1 is a real number greater than one. As a
consequence of the uniqueness of the solution of the Cauchy Problem
(A(t), 0, I), have that Φ(2 + τ) = Φ(τ)Φ(2) for all τ ∈ R.

Let us consider also the vectorial non-homogenous Cauchy Problem
{

ẏ(t) = A(t)y(t) + eiµtf(t), t ∈ R+

y(0) = 0,
(A(t), µ, f(t), 0, 0)

where f is some continuous function. With P2,0(R+,C
n) we shall denote

the space consisting of all continuous and 2-periodic functions g with
the property that g(0) = 0. We endow this space with the norm ”sup”.
For each k ∈ {1, 2} let us consider the set Ak consisting by all functions
f ∈ P2,0(R+,C

n) given for t ∈ [0, 2] by f(t) = Φ(t)hk(t).

Theorem 1. The following two statements hold true.

(i) If the system (A(t)) is uniformly exponentially stable then for

each continuous and bounded function f and each real number µ the

solution of (A(t), µ, f, 0, 0) is bounded.

(ii) Let A := A1 ∪ A2. If for each f ∈ A and for each real number

µ the solution of the Cauchy Problem (A, µ, f, 0, 0) is bounded then the

system (A(t)) is uniformly exponentially stable.

Proof. The solution ψf of (A(t), µ, f, 0, 0) is given by

ψf (t) =

∫ t

0

Φ(t)Φ−1(s)eiµsf(s)ds.
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The assertion (i) is now an easy consequence of the following estimates.

‖ψf (t)‖ ≤

∫ t

0

‖Φ(t)Φ−1(s)‖‖f(s)‖ds

≤

∫ t

0

Ne−ν(t−s)‖f(s)‖ds

≤ Ne−νt

∫ t

0

eνs‖f(s)‖ds.

Let sup
τ∈[0,2]

‖f(τ)‖ = Mf . Then

‖ψf(t)‖ ≤ Ne−νt

∫ t

0

eνsMfds

= Mf

N

ν
(1 − e−νt)

≤
N

ν
Mf .

Thus ψf is bounded.
The argument for the second statement is a bit more difficult.
Let b ∈ Cn and f1 ∈ P2,0(R+,C

n) given on [0, 2] by

f1(τ) =

{

Φ(τ)(τb), if τ ∈ [0, 1)
Φ(τ)(2 − τ)b, if τ ∈ [1, 2].

and h1 defined in (1). Then for each τ ∈ R have that f1(τ) =
Φ(τ)h1(τ)b. For each natural number n, one has

ψf1
(2n) =

∫ 2n

0

Φ(2n)Φ−1(s)eiµsf1(s)ds

=
n−1
∑

k=0

∫ 2k+2

2k

Φ(2n)Φ−1(s)eiµsf1(s)ds.

Put s = 2k+ τ, and using the fact that Φ−1(2k+ τ) = Φ−1(2k)Φ−1(τ),
we get

ψf1
(2n) =

n−1
∑

k=0

∫ 1

0

Φ(2n)Φ−1(2k + τ)e2iµkeiµτf1(τ)dτ

=
n−1
∑

k=0

e2iµkΦ(2n− 2k)b

∫ 2

0

eiµτh1(τ)dτ.
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Let us denote

A1 = C\{2kπ : k ∈ Z} and M1(µ) =

∫ 2

0

eiµτh1(τ)dτ.

We know that M1(µ) 6= 0 for every µ ∈ A1 and thus

ψf1
(2n)(M1(µ))−1 =

n−1
∑

k=0

e2iµkΦ(2n− 2k)b, for all µ ∈ A1. (6)

Consider also the function h2 defined by

h2(τ) = τ(1 − τ), τ ∈ [0, 2]

and the function f2 ∈ P2,0(R+,C
n) given on [0, 2] by the formula

f2(τ) = Φ(τ)h2(τ)b.

By the same procedure, we obtain

ψf2
(2n)(M2(µ))−1 =

n−1
∑

k=0

e2iµkΦ(2n− 2k)b, µ ∈ {2kπ : k ∈ Z}, (7)

where

M2(µ) =

2
∫

0

eiµτh2(τ)dτ.

We know that ψf1
and ψf2

are bounded functions. Then there are two
positive constants K1(µ, f1), K2(µ, f2) such that

‖ψf1
(2n)‖ ≤ K1(µ, f1) and ‖ψf2

(2n)‖ ≤ K2(µ, f2) for all n = 1, 2 . . . .

From (6) follows that if µ ∈ A1 then
∥

∥

∥

∥

∥

n−1
∑

k=0

e2iµkΦ(2n− 2k)b

∥

∥

∥

∥

∥

≤
K1(µ, f1)

|M1(µ)|
= r1(µ, f1)

and analogously using (7), if µ ∈ {2kπ : k ∈ Z} then we get
∥

∥

∥

∥

∥

n−1
∑

k=0

e2iµkΦ(2n− 2k)b

∥

∥

∥

∥

∥

≤
K2(µ, f2)

|M2(µ)|
= r2(µ, f2).

Now for each real number µ and each b ∈ Cn, the above inequalities
yield

∥

∥

∥

∥

∥

n−1
∑

k=0

e2iµkΦ(2n− 2k)b

∥

∥

∥

∥

∥

≤ r1(µ, f1) + r2(µ, f2). (8)
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On the other hand replacing j by n− k, we get

n−1
∑

k=0

e2iµkΦ(2n− 2k)b = e2iµn

n
∑

j=1

e−2iµjΦ(2j)b. (9)

Following Uniform Boundedness Principle and using the relations (8)
and (9) we can find a positive constant L(µ) such that

∥

∥

∥

∥

∥

n
∑

j=1

e−2iµs(Φ(2))j

∥

∥

∥

∥

∥

≤ L(µ) <∞.

Now we can apply Corollary 2 for T = Φ(2) and can say that the
spectrum of Φ(1) lies in the interior of the circle of radius one, i.e. the
system (A(t)) is uniformly exponentially stable. This completes the
proof. �

Corollary 3. The system (A(t)) is uniformly exponentially stable if

and only if for each real number µ and each function f belonging to

P2,0(R+,C
n) the solution of (A(t), µ, f, 0, 0) is bounded.

Using the periodicity of Φ and of f it is easy to see that the solution
ψf is bounded if the sequence (ψf (n)) is bounded as well. If we return
to (6) and (7) we should be able to recapture the inequality (8) under
the assumption that for each vector b the series (

∑

j≥0

||Φ(2j)b||) is con-

vergent. Then the following Corollary of Datko type may be stated as
well.

Corollary 4. With the above notations we have that the system (A(t))
is uniformly exponentially stable if and only if for each vector b the

following inequality holds true.

∞
∑

j=1

||Φ(2j)b|| <∞. (10)

It is not difficult to see that the requirement (10) may be replaced
by an apparently weaker one, namely with the inequality

∞
∑

j=1

|〈Φ(2j)b, b〉| <∞, ∀b ∈ C
n.
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